Issue 67, 2014

Sticky superhydrophobic hard nanofibers from soft matter

Abstract

Here, we show the possibility to change superhydrophobic properties from soft to hard polymer nanofibers by the control of molecular structure and branching. In fact, we report the synthesis of original monomers derived from 3,4-propylenedioxythiophene (ProDOT) and bearing two branched alkyl chains and their electrodeposition by cyclic voltammetry. We point out that the hydrocarbon moiety (cheaper, readily available, non-toxic) can be an alternative to long fluorocarbon chains (expensive, requiring extensive synthesis, bioaccumulable) to achieve anti-wetting properties. Moreover, we show that the change in the size of branched chains can affect the surface morphology, from soft to hard nanofibers with a high increase in water adhesion due to a lower intrinsic hydrophobicity (sticky superhydrophobicity or parahydrophobicity). We demonstrate the possibility to produce them from soft matter, i.e. polymers. In the case of the hard nanofibers, cross-section images reveal that these fibers are vertically aligned to the substrate. Moreover, we show that the height and the diameter of the hard nanofibers, as well as the distance between the fibers can be controlled by the number of deposition scans. Such materials could be used for biomedical applications, for example.

Graphical abstract: Sticky superhydrophobic hard nanofibers from soft matter

Article information

Article type
Paper
Submitted
30 May 2014
Accepted
29 Jul 2014
First published
30 Jul 2014

RSC Adv., 2014,4, 35708-35716

Author version available

Sticky superhydrophobic hard nanofibers from soft matter

T. Darmanin, C. Mortier, J. Eastoe, M. Sagisaka and F. Guittard, RSC Adv., 2014, 4, 35708 DOI: 10.1039/C4RA05150E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements