Synthesis gas production from bio-oil: steam reforming of ethanol as a model compound
Abstract
Using original hydrothermal technology honeycomb corundum monoliths with a peculiar porous structure and high water-adsorbing capacity facilitating procedures of active component loading have been produced. The detailed study of ethanol steam reforming over Ru/Ce0.5Zr0.5O2(CZ), Ru/Ce0.4Zr0.4Sm0.2O2–(δ + γ)Al2O3 (granulated) and Ru/Ce0.4Zr0.4Sm0.2O2/α-Al2O3 (monolithic) has been performed. It has been revealed that the main route of the reaction over Ru/CZ is ethanol dehydrogenation while ethanol dehydration into ethylene mainly occurs over Ru/CZS–Al2O3. Variation of the H2O–EtOH ratio, contact time and temperature allows hydrogen and CO yield to be governed. The monolithic catalyst has shown a high performance and stability at short contact time (0.1–0.4 s) and low water concentration (H2O–EtOH ∼ 1–3).