Issue 84, 2014

QSPR with descriptors based on averages of vertex invariants. An artificial neural network study

Abstract

New type of indices, the mean molecular connectivity indices (MMCI), based on nine different concepts of mean are proposed to model, together with molecular connectivity indices (MCI), experimental parameters and random variables, eleven properties of organic solvents. Two model methodologies are used to test the different descriptors: the multilinear least-squares (MLS) methodology and the Artificial Neural Network (ANN) methodology. The top three quantitative structure–property relationships (QSPR) for each property are chosen with the MLS method. The indices of these three QSPRs were used to train the ANNs that selected the best training sets of indices to estimate the evaluation sets of compounds. The best ANN relationships for most properties are of the semiempirical types that include mean molecular connectivity indices (MMCI), molecular connectivity indices (MCI) and experimental parameters. Refractive index, RI, viscosity, η, and surface tension, γ, prefer a semiempirical relationship made of MCI and an experimental parameter only. In our previous study with no MMCI, random variables contributed to semiempirical relationships for two properties at the ANN level (MS, and El), here the use of MMCIs undo the contribution of such variables. Most of the MMCIs that contribute to improve the model of the properties are valence-delta-dependent (δv), that is, they encode both the hydrogen atom contribution and the core electrons of higher-row atoms.

Graphical abstract: QSPR with descriptors based on averages of vertex invariants. An artificial neural network study

Article information

Article type
Paper
Submitted
10 Jul 2014
Accepted
02 Sep 2014
First published
03 Sep 2014

RSC Adv., 2014,4, 44733-44740

Author version available

QSPR with descriptors based on averages of vertex invariants. An artificial neural network study

L. Pogliani and J. Vicente de Julián-Ortiz, RSC Adv., 2014, 4, 44733 DOI: 10.1039/C4RA06484D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements