Issue 106, 2014

Reversal of the enantioselectivity in aldol addition over immobilized di- and tripeptides: studies under continuous flow conditions

Abstract

Heterogeneous asymmetric direct aldol reactions between aldehydes (2-nitrobenzaldehyde, 2-methylpropanal) and acetone catalyzed by polystyrene resin (PS) supported di- and tripeptides H-Pro-Pro-, H-Pro-Pro-Pro-, H-Pro-Glu(OH)-, H-Pro-Pro-Glu(OH)-, H-Pro-Asp(OH)-, H-Pro-Pro-Asp(OH)-, H-Ser-Glu(OH)-, H-Ser-Ser-Glu(OH)-, H-Val-Glu(OH)-, H-Val-Val-Glu(OH)-MBHA-PS, were studied under identical experimental conditions at room temperature in a continuous-flow fixed-bed reactor (CFBR) system. In the asymmetric aldol reactions reversal of enantioselectivity was observed on H-Pro-Pro-Glu(OH)- and H-Pro-Pro-Asp(OH)-MBHA-PS-supported catalysts (ee 42–67% S) as compared to the H-Pro-Glu(OH)- and H-Pro-Asp(OH)-MBHA-PS-supported catalyst (ee 28–82% R). In the case of H-Pro-Pro- and H-Pro-Pro-Pro-MBHA-PS-supported catalysts reversed enantioselectivity was observed by using the benzoic acid additive (12% S) as compared to the H-Pro-MBHA-PS catalyst (25% R). The stability of the catalysts in the flow system was consistent with the heterogeneous character of the reaction, as was the linear behavior obtained using mixtures of L- and D-enantiomers of the supported H-Pro-MBHA-PS catalyst. The enamine character of the reaction intermediates was supported by ESI-MS measurements. Based on these and the computed structure of the peptides, the conformation of the intermediate adducts is held responsible for chiral induction, therefore for the enantioselectivity inversion observed in these reactions.

Graphical abstract: Reversal of the enantioselectivity in aldol addition over immobilized di- and tripeptides: studies under continuous flow conditions

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2014
Accepted
10 Nov 2014
First published
10 Nov 2014

RSC Adv., 2014,4, 61611-61618

Author version available

Reversal of the enantioselectivity in aldol addition over immobilized di- and tripeptides: studies under continuous flow conditions

A. Gurka, I. Bucsi, L. Kovács, G. Szőllősi and M. Bartók, RSC Adv., 2014, 4, 61611 DOI: 10.1039/C4RA07188C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements