Issue 97, 2014

Nanoporous polymer scaffold-embedded nonwoven composite separator membranes for high-rate lithium-ion batteries

Abstract

The never-ceasing pursuit of high-energy/high-power lithium-ion batteries, which have garnered a great deal of attention particularly in (hybrid) electric vehicle and grid-scale energy storage system applications, is having with serious issues related to the performance deterioration and safety failures of cells. Herein, to overcome these challenges, we demonstrate a new class of three-dimensionally interconnected, nanoporous poly(vinylidene fluoride–hexafluoropropylene) (PVdF–HFP) scaffold-embedded polyethylene terephthalate (PET) nonwoven composite separators (referred to as “SF-NW separators”) as a microporous membrane-based approach. Motivated by unique porous structure based on inverse replicas of densely-packed nanoparticle arrays, sacrificial colloidal silica (SiO2) template-mediated nanoarchitecturing is exploited to fabricate SF-NW separators. The selective removal of SiO2 nanoparticles dispersed in PVdF–HFP matrix allows for the formation of a nanoporous PVdF–HFP scaffold in a PET nonwoven, where the PET nonwoven acts as a compliant porous substrate providing mechanical/thermal stability. The nanoporous structure of SF-NW separators is fine-tuned by varying the SiO2/PVdF-HFP composition ratio. Owing to the highly-developed nanoporous PVdF–HFP scaffold, the SF-NW separator shows facile ionic transport and excellent electrolyte wettability; thus, contributing to the superior cell performance (particularly at high charge/discharge current densities) in comparison to conventional polyolefin separators.

Graphical abstract: Nanoporous polymer scaffold-embedded nonwoven composite separator membranes for high-rate lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
02 Aug 2014
Accepted
06 Oct 2014
First published
07 Oct 2014

RSC Adv., 2014,4, 54312-54321

Nanoporous polymer scaffold-embedded nonwoven composite separator membranes for high-rate lithium-ion batteries

J. Kim, J. Kim, E. Choi, J. H. Kim and S. Lee, RSC Adv., 2014, 4, 54312 DOI: 10.1039/C4RA07994A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements