Issue 98, 2014

Efficient preparation of ultralarge graphene oxide using a PEDOT:PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices

Abstract

We herein report an investigation of ultralarge graphene oxide (UL-GO) sheet/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin composite layers fabricated by spin coating on an indium–tin-oxide (ITO) anode as hole transport layer (HTL) in polymer light-emitting diodes (PLEDs), as well as polymer solar cells (PSCs). Monolayer UL-GOs were first synthesized based on a novel solution-phase method involving pre-exfoliation of graphite flakes which were then mixed into the PEDOT:PSS solution in various specific amounts. The PEDOT:PSS composite film mixed with 0.04 wt% UL-GO by weight exhibits a conductivity of 749.4 S cm−1 and a transmittance of 88.6% at 550 nm. The PEDOT:PSS/GO HTL shows enhanced charge carrier transport because of improved conductivity by the weakening of the coulombic attraction between PEDOT and PSS by the functional groups on GO nanosheets, and the formation of an extended conductive network. Moreover, it can effectively block electrons and reduce resistance in the HTL, leading to better injection and transport of holes and lower turn-on voltage and resulting in a higher overall efficiency in PLEDs. Similarly, it remarkably increases the short circuit current (Jsc), and PSC efficiency because of a remarkable reduction of exciton quenching that results in higher charge extraction in PSCs. The optimized PLEDs and PSCs with a PEDOT:PSS/GO composite HTL layer show a maximum luminosity of 725.6 cd m−2 (at 10.6 V) for PLEDs, as well as a power conversion efficiency of 3.388% for PSCs, which were improved by ∼11% and 12%, respectively, compared to reference PLEDs and PSCs with a PEDOT:PSS layer.

Graphical abstract: Efficient preparation of ultralarge graphene oxide using a PEDOT:PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices

Article information

Article type
Paper
Submitted
29 Aug 2014
Accepted
23 Sep 2014
First published
28 Oct 2014

RSC Adv., 2014,4, 55067-55076

Efficient preparation of ultralarge graphene oxide using a PEDOT:PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices

H. S. Dehsari, E. K. Shalamzari, J. N. Gavgani, F. A. Taromi and S. Ghanbary, RSC Adv., 2014, 4, 55067 DOI: 10.1039/C4RA09474C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements