147% improved efficiency of dye synthesized solar cells by using CdS QDs, Au nanorods and Au nanoparticles
Abstract
This work describes a cooperative quantum dot and plasmonic effect on improving the performance of dye synthesized solar cells, in which CdS QDs, gold nanoparticles (GNPs), and gold nanorods (GNRs) are incorporated into the active layer. The cooperative nanoparticles show a superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to dye synthesized solar cells with a power conversion efficiency accounting for a 147% enhancement. The cooperative CdS QDs and plasmonic effect arose from the cooperation of the resonance enhancement of QDs and two different nanostructures. Detailed studies shed light into the influence of quantum dots and plasmonic nanostructures on dissociation, exciton generation, and charge transport as well as recombination inside these devices.