Issue 109, 2014

Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo-MOFs: application to methane purification and storage

Abstract

Equilibrium adsorption of methane (CH4), C2+ gases (ethane (C2H6), ethylene (C2H4), propane (C3H8), and propylene (C3H6)), and carbon dioxide (CO2) was measured on a series of tbo-MOFs (topological analogues of the prototypical MOF, HKUST-1, correspondingly dubbed tbo-MOF-1), which were developed via the supermolecular building layer (SBL) pillaring strategy. Specifically, tbo-MOF-2 and its isoreticular, functionalized analogue, tbo-MOF-2-{CH2O[Ph(CO2H)2]}2 (or tbo-MOF-3), which is characterized by pendant isophthalic acid moieties freely pointing into the cavities, were evaluated on the basis of potential use in methane storage and C2+/CH4 separation. The parent, tbo-MOF-2, showed high gravimetric and volumetric CH4 uptake, close to the U.S. Department of Energy (DOE) target for methane storage at 35 bar and room temperature. Though the presence of the pendant isophthalic acid moiety in the analogous compound, tbo-MOF-3, led to a decrease in total CH4 uptake, due mainly to the reduced size of the cavities, interestingly, it increased the affinity of the SBL-based tbo-MOF platform for propane, propene, ethane, and ethylene at low pressures compared with CH4, due additionally to the enhanced interactions of the highly polarizable light hydrocarbons with the isophthalic acid moiety. Using Ideal Adsorption Solution Theory (IAST), the predicted mixture adsorption equilibria for the C3H8/CH4, C3H6/CH4, C2H6/CH4, C2H4/CH4, and C3H8/CO2 systems showed high adsorption selectivity for C2+ over methane for tbo-MOF-3 compared with tbo-MOF-2. The high working storage capacity of tbo-MOF-2 and the high affinity of tbo-MOF-3 for C2+ over CH4 and CO2 make tbo-MOF an ideal platform for studies in gas storage and separation.

Graphical abstract: Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo-MOFs: application to methane purification and storage

Supplementary files

Article information

Article type
Communication
Submitted
21 Aug 2014
Accepted
21 Oct 2014
First published
22 Oct 2014

RSC Adv., 2014,4, 63855-63859

Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo-MOFs: application to methane purification and storage

Y. Belmabkhout, H. Mouttaki, J. F. Eubank, V. Guillerm and M. Eddaoudi, RSC Adv., 2014, 4, 63855 DOI: 10.1039/C4RA12432D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements