High performance Pd catalyst using silica modified titanate nanotubes (STNT) as support and its catalysis toward hydrogenation of cinnamaldehyde at ambient temperature
Abstract
Titanate nanotubes (TNTs) were coupled with amino-propyl-triethoxy silane (KH550) and calcinated at 400 °C, then the silica modified titanate nanotubes (STNTs) were prepared and used as the support of a Pd catalyst by the method of wet-impregnation. The catalyst was characterized with XRD, Raman spectra, TEM, XPS, and H2-TPR/TPD. The silica modification could effectively resist morphology collapse and crystallization of TNT during calcination, and preserve the high surface area of the TNT support, which contribute to the high metal dispersion of loaded Pd. Moreover, the introduced silica could strengthen the metal–support interaction, causing an electronic effect that facilitates the reduction of Pd ions. The Pd/STNT showed 3 times and 2.5 times higher activity than those of commercial Pd/C and unmodified Pd/TNT catalysts towards the selective hydrogenation of cinnamaldehyde at room temperature, respectively, indicating the enhanced catalytic activity by the addition of silica.