Issue 9, 2014

Inorganic–organic hybrid polymer with multiple redox for high-density data storage

Abstract

Although organic multilevel resistance memories have attracted much attention for potential realization of the exponentially-increasing density of data storage, the ambiguous structure–property relationship and the unclear switching mechanism impeded further development of multilevel resistance memory devices. Therefore, it is very urgent to ingeniously design multilevel memory materials with a certain switching mechanism. In this contribution, we have employed a multi-redox (multiple barriers) polyoxometalate-based inorganic–organic hybrid polymer (whose effective carriers are electrically controllable) to realize a ternary resistance switching memory (multilevel memories). We do believe that the as-designed inorganic–organic polymer can integrate the multi-redox states of the POM and the processability of flexible polymers together. The as-fabricated multilevel memory devices exhibit rewriteable switching properties among three redox states by applying different RESET voltages, good endurance with distinct operation windows, and long retention. Our results could provide a new strategy to design controllable multilevel resistance memories with excellent performance.

Graphical abstract: Inorganic–organic hybrid polymer with multiple redox for high-density data storage

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Mar 2014
Accepted
01 May 2014
First published
02 May 2014

Chem. Sci., 2014,5, 3404-3408

Author version available

Inorganic–organic hybrid polymer with multiple redox for high-density data storage

B. Hu, C. Wang, J. Wang, J. Gao, K. Wang, J. Wu, G. Zhang, W. Cheng, B. Venkateswarlu, M. Wang, P. S. Lee and Q. Zhang, Chem. Sci., 2014, 5, 3404 DOI: 10.1039/C4SC00823E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements