Issue 13, 2014

Cholesterol affects C60 translocation across lipid bilayers

Abstract

Cholesterol plays an important role in regulating the structural properties of phospholipid membranes and further influences the permeability of molecules and nanoparticles. However, nanoparticles' translocation across phospholipid membranes in the presence of cholesterol on the molecular scale is rarely studied. Here, we performed coarse-grained molecular dynamics simulations to probe the translocation of C60, one of the most popular nanoparticles, across dipalmitoylphosphatidylcholine bilayers with different concentrations of cholesterol molecules (0–50 mol%). The results reveal that the presence of cholesterol molecules induces lower area per lipid, larger bilayer thickness, and more ordered orientation of lipid tails. The higher the concentration of cholesterol molecules, the more significant is the condensing effect of lipid bilayer as just mentioned. Besides, dynamic processes, free energy profiles and permeability coefficients further indicate that the permeability of C60 decreases with increasing cholesterol concentration, which can be explained by the condensation effect and reduced free volume. Our researches provide an explicit description of the impact of cholesterol on C60 translocation across lipid bilayers.

Graphical abstract: Cholesterol affects C60 translocation across lipid bilayers

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2013
Accepted
13 Jan 2014
First published
14 Jan 2014

Soft Matter, 2014,10, 2160-2168

Cholesterol affects C60 translocation across lipid bilayers

D. Sun, X. Lin and N. Gu, Soft Matter, 2014, 10, 2160 DOI: 10.1039/C3SM52211C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements