Capillary force acting on a colloidal particle floating on a deformed interface
Abstract
We analytically determine the lateral capillary force acting on a spherical colloid trapped at an interface of arbitrary shape. Our calculations, which are valid for colloids that are small with respect to the capillary length, take into account surface tension, pressure and gravity. We relate the force acting on the colloid to the shape of the liquid interface prior to colloid deposition. Our approach is a generalization of a previous study of ours [Ch. Blanc et al., Phys. Rev. Lett., 2013, 111, 058302] to the case in which gravity is present. Our findings are in agreement with the so-called Nicolson superposition approximation [D. Y. C. Chan, J. D. J. Henry and L. R. White, J. Colloid Interface Sci., 1981, 79, 410] and with the curvature-dependent capillary force predicted by Würger [A. Würger, Phys. Rev. E, 2006, 74, 041402], and extend these results by including higher-order terms in the ratio between the size of the colloid and the capillary length. We thoroughly validate our theoretical expressions by means of an exact nonlinear numerical calculation.