Issue 38, 2014

Digital colloids: reconfigurable clusters as high information density elements

Abstract

Through the design and manipulation of discrete, nanoscale systems capable of encoding massive amounts of information, the basic components of computation are open to reinvention. These components will enable tagging, memory storage, and sensing in unusual environments – elementary functions crucial for soft robotics and “wet computing”. Here we show how reconfigurable clusters made of N colloidal particles bound flexibly to a central colloidal sphere have the capacity to store an amount of information that increases as O(N ln(N)). Using Brownian dynamics simulations, we predict dynamical regimes that allow for information to be written, saved, and erased. We experimentally assemble an N = 4 reconfigurable cluster from chemically synthesized colloidal building blocks, and monitor its equilibrium dynamics. We observe state switching in agreement with simulations. This cluster can store one bit of information, and represents the simplest digital colloid.

Graphical abstract: Digital colloids: reconfigurable clusters as high information density elements

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2014
Accepted
19 Jun 2014
First published
14 Jul 2014

Soft Matter, 2014,10, 7468-7479

Digital colloids: reconfigurable clusters as high information density elements

C. L. Phillips, E. Jankowski, B. J. Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine and S. C. Glotzer, Soft Matter, 2014, 10, 7468 DOI: 10.1039/C4SM00796D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements