Issue 26, 2014

Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction

Abstract

This work reports on the synthesis of the intrinsically conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with several counter-ions, ClO4, PF6 and bis(trifluoromethylsulfonyl)imide (BTFMSI), by electro-polymerization and its thermoelectric properties. We show that, depending on the counter-ion size, the thermoelectric efficiency of PEDOT can be increased up to two orders of magnitude. A further chemical reduction with hydrazine optimizes the power factor (PF). By changing the counter-ions, we were able to increase the electrical conductivity (σ) of PEDOT by a factor of three, while the Seebeck coefficient remains at the same order of magnitude in the three polymers. The best thermoelectric efficiency has been observed in PEDOT:BTFMSI. From the measurement of the Seebeck coefficient and σ, a PF of 147 μW m−1 K−2 has been deduced, while the measured thermal conductivity is κ = 0.19 W m−1 K−1, resulting in a ZT ∼ 0.22 at room temperature, one of the highest values reported in the literature for polymers. The increase in σ with the change of the counter-ion is mainly due to the stretching of the polymer chains. In this work, we provide a chemical route to further improve ZT in polymers and demonstrate a method of synthesis based on the electro-polymerization on gold. After removing the gold layer, a very thin semiconducting polymer film can be isolated.

Graphical abstract: Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2014
Accepted
12 Apr 2014
First published
15 Apr 2014

J. Mater. Chem. A, 2014,2, 10109-10115

Author version available

Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction

M. Culebras, C. M. Gómez and A. Cantarero, J. Mater. Chem. A, 2014, 2, 10109 DOI: 10.1039/C4TA01012D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements