Issue 31, 2014

Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors

Abstract

To explore enhancing photocurrent in organic solar cells (OSCs) via harvesting triplet excitons, two novel bicycloiridium complexes (R1 and R2) are designed and synthesized. Conventional bulk-heterojunction triplet OSCs are solution processed using R1 or R2 as sole electron donors and phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor. A decent short circuit current (Jsc) of 6.5 mA cm−2 is achieved though the overlap between the absorption spectrum (with ∼550 nm absorption onset) of R2 and the solar flux is relatively small. With an open circuit voltage of 0.74 V and a fill factor of 0.42, an encouraging power conversion efficiency of 2.0% is achieved in the OSCs based on R2 and PC71BM without any processing additives and post-treatments. Our preliminary result demonstrates the possibility of utilizing Ir complexes as sole electron donors in OSCs, which extends available soluble small molecules for OSCs.

Graphical abstract: Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2014
Accepted
17 May 2014
First published
21 May 2014

J. Mater. Chem. A, 2014,2, 12390-12396

Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors

H. Zhen, Q. Hou, K. Li, Z. Ma, S. Fabiano, F. Gao and F. Zhang, J. Mater. Chem. A, 2014, 2, 12390 DOI: 10.1039/C4TA01526F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements