Issue 37, 2014

Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances

Abstract

Herein, we demonstrate that ZnO nanowire arrays could be rationally connected with each other by thin Au nanowires to construct a novel cross-linked hetero-structure by a simple photo-directed growth strategy. Moreover, a possible formation mechanism of this Au/ZnO hierarchical nanostructure has been proposed. In the case of light irradiation, the rapid electron enrichment on the top (002) facets of ZnO nanowires will result in a high concentration of holes on the side facets, which could generate a positive electric field. As a result of the electronegativity, [Au(OH)xCl4−x] (where x = 0–4) anions could be pulled in by this electric field and reduced on the side facets of ZnO nanowires, and the Au nanowires could be gradually formed through an exact opposite point growth route. Furthermore, the photoelectrochemical performance studies clearly reveal that these novel cross-linked hetero-arrays exhibit much higher visible light photocurrent density than both pure ZnO nanowire arrays and traditional Au nanoparticle/ZnO nanowire heterostructures, which may be primarily ascribed to the efficient electron transfer from Au nanostructures to ZnO nanowires.

Graphical abstract: Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2014
Accepted
28 Jul 2014
First published
28 Jul 2014

J. Mater. Chem. A, 2014,2, 15553-15559

Author version available

Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances

T. Wang, B. Jin, Z. Jiao, G. Lu, J. Ye and Y. Bi, J. Mater. Chem. A, 2014, 2, 15553 DOI: 10.1039/C4TA02960G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements