Issue 44, 2014

A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries

Abstract

Silicon offers an extremely high theoretical specific capacity, but suffers from dramatic volume change during lithiation/delithiation processes, which typically leads to rapid anode degradation. Here we designed a facile and self-assembly strategy to construct a three-dimensional (3D) polymeric network as a promising binder for high-performance silicon submicro-particle (SiSMP) anodes through in situ interconnection of alginate chains by additive divalent cations. The highly cross-linked alginate network exhibits superb mechanical properties and strongly interacts with SiSMPs, which can tolerate the volume change of SiSMPs and restrict the volume expansion of the laminates to a large degree, thus effectively maintaining the mechanical and electrical integrity of the electrode and significantly improving the electrochemical performance. As a result, SiSMPs with a 3D binder network exhibit high reversible capacity, superior rate capability and much prolonged cycle life. Additionally, the 3D alginate binder was also successfully applied for the industrial submicro-silicon waste from solar cell production. With all of the advantages, the innovative way to tolerate the severe volume change by using a high-strength polymeric network may open a new approach to realize the industrial application of Si-based anodes in lithium-ion batteries.

Graphical abstract: A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2014
Accepted
19 Sep 2014
First published
19 Sep 2014

J. Mater. Chem. A, 2014,2, 19036-19045

A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries

L. Zhang, L. Zhang, L. Chai, P. Xue, W. Hao and H. Zheng, J. Mater. Chem. A, 2014, 2, 19036 DOI: 10.1039/C4TA04320K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements