Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery†
Abstract
Cyanoethyl polyvinyl alcohol (PVA-CN)-based gel polymer electrolyte (GPE) is a high-performance electrolyte for lithium-ion batteries (LIBs), which is in situ synthesized from a stable monomer without using additional initiators. Unfortunately, the gelation mechanism of PVA-CN is still unclear. Furthermore, for general GPEs prepared by in situ polymerization, the electrode–GPE interface in batteries remains to be further optimized. Here we present the gelation mechanism of the PVA-CN-based GPE and fabricate an electrode–GPE interface with less resistance during battery formation. The cross-linkable PVA-CN-based organogel is formed via in situ cationic polymerization of the cyano resin initiated by PF5, a strong Lewis acid produced by the thermo-decomposition of LiPF6. It is interesting to find that the battery formation process completed in the precursor solution instead of gel can greatly reduce the interfacial resistance of graphite–GPE and benefit the formation of a more stable solid electrolyte interface (SEI) on the anode, which contributes to a dramatic improvement in battery performance. This work gives useful guidance towards designing new GPE materials and promoting their practical application in LIBs.