Self-assembled magnetic luminescent hybrid micelles containing rare earth Eu for dual-modality MR and optical imaging†
Abstract
In this study, we report new water-soluble multifunctional nanomaterials based on amphiphilic poly(HFMA-co-Eu(AA)3Phen)-g-PEG copolymers and oleic acid modified Fe3O4 nanoparticles. The nanoparticles can self-assemble to form magnetic and luminescent hybrid micelles and show a spherical morphology, paramagnetic properties with a maximum saturation magnetization of 7.05 emu g−1, and a high transverse relaxivity of 340 mM−1 s−1. According to in vivo magnetic resonance imaging (MRI) experiments, excellent contrast of the liver and spleen was achieved after injection of the hybrid micelles. Fluorescence spectra show characteristic emission peaks from the rare earth Eu at 616 nm and vivid red fluorescence can be observed by 2-photon confocal laser scanning microscopy (CLSM). In vivo optical imaging demonstrates the unique fluorescent characteristics of the magnetic and luminescent hybrid micelles in the liver and spleen and the excellent multifunctional properties suggest the possibility of clinical use as nanocarriers in magnetic resonance imaging and optical imaging.