High concentration of nitrogen doped into graphene using N2 plasma with an aluminum oxide buffer layer
Abstract
We performed plasma doping of nitrogen into single-layer graphene on SiO2. Using aluminum oxide as a buffer layer to reduce the plasma damage, up to 19.7% nitrogen was substitutionally doped into graphene. The nitrogen doping of graphene was confirmed by Raman and X-ray photoemission spectroscopy analyses. The n-doping property of the N-doped graphene was measured by Raman spectroscopy. Raman mapping was carried out to statistically confirm the Dirac cone shift of graphene resulting from the N-doping. The Dirac cone shift was directly measured by ultraviolet photoemission spectroscopy (UPS). The UPS result was consistent with the value calculated from the Raman G peak shift.