Issue 25, 2014

Obtaining highly efficient single-emissive-layer orange and two-element white organic light-emitting diodes by the solution process

Abstract

By attaching two electron-withdrawing trifluoromethyl (CF3) groups to the 2-phenylbenzothiazole cyclo-metalated ligand, a bis-trifluoromethyl-functionalized orange-emitting phosphorescent iridium(III) complex bis-(6-(trifluoromethyl)-2-(4-(trifluoromethyl)phenylbenzothiozolato))iridium(acetylacetonate) [(F3BT-CF3P)2Ir(acac)] was successfully synthesized. The optical, electrochemical and electroluminescence (EL) properties of this new complex were studied. The experimental results support the theoretical expectation that incorporating electron-withdrawing trifluoromethyl groups at the 4-site of the phenyl ring directly bonded to the metal center, and at the 6-site of 2-phenylbenzothiazole, cause a bathochromic shift in the emission peak and bring the emission color much closer to long-wavelength orange light. Moreover, such trifluoromethyl substituents can hinder the π–π stacking or self-polarization effect occurring from the aggregation of the molecules. The new iridium complex gives an unchanged luminescence spectrum, regardless of whether it is in solution, in untreated film or in film doped at different concentrations. Using this iridium complex as a dopant emitter, solution-processed single emissive layer orange and two-element white OLEDs with good performance can be obtained. Highly efficient orange electroluminescence was obtained with a maximum efficiency of 10.5 cd A−1 and CIE coordinates (0.48, 0.51). When combined with a commercial sky-blue phosphorescent emitter, (CF3BT–CF3P)2Ir(acac) can be utilized to achieve two-element white OLEDs that exhibited a high efficiency of 28.3 cd A−1. Such OLEDs retain high efficiency at a luminance suitable for lighting (e.g. 5000 cd m−2).

Graphical abstract: Obtaining highly efficient single-emissive-layer orange and two-element white organic light-emitting diodes by the solution process

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2014
Accepted
29 Apr 2014
First published
02 May 2014

J. Mater. Chem. C, 2014,2, 5036-5045

Obtaining highly efficient single-emissive-layer orange and two-element white organic light-emitting diodes by the solution process

J. Wang, X. Xu, Y. Tian, C. Yao and L. Li, J. Mater. Chem. C, 2014, 2, 5036 DOI: 10.1039/C4TC00052H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements