Issue 2, 2015

Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence

Abstract

The unique properties of metallic nanostructures of coinage metals that can sustain localized surface plasmon resonances (LSPR) put them at the centre of plasmon-enhanced phenomena. The theory of plasmonic phenomena based on LSPR is well-established. However, the fabrication of plasmonic substrates, reproducibly, is still challenging for applications in surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). In this work we describe well-ordered copper nanostructures (CuNSs), produced by electrodeposition and nanosphere lithography, as active substrates for SEF. After a detailed spectroscopic and microscopic characterization, CuNSs are successfully applied as SEF-active substrates using a well-known perylene derivative as a target molecule. The signal reproducibility from CuNS substrates was established by comparing the results against those obtained from a simply roughened Cu substrate. Under optimal conditions, signal variability is around 4%.

Graphical abstract: Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2014
Accepted
07 Nov 2014
First published
07 Nov 2014

Analyst, 2015,140, 476-482

Author version available

Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence

D. Volpati, E. R. Spada, C. C. P. Cid, M. L. Sartorelli, R. F. Aroca and C. J. L. Constantino, Analyst, 2015, 140, 476 DOI: 10.1039/C4AN00889H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements