Issue 2, 2015

Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach

Abstract

This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-CoIITAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-CoIITAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule.

Graphical abstract: Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
01 Oct 2014
Accepted
21 Oct 2014
First published
21 Oct 2014

Analyst, 2015,140, 489-496

Author version available

Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach

A. Sivanesan, W. Adamkiewicz, G. Kalaivani, A. Kamińska, J. Waluk, R. Hołyst and E. L. Izake, Analyst, 2015, 140, 489 DOI: 10.1039/C4AN01778A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements