A peptide nucleic acid-functionalized carbon nitride nanosheet as a probe for in situ monitoring of intracellular microRNA†
Abstract
A novel probe for recognition of both cancer cells and intracellular microRNA (miRNA) is designed by functionalizing a carbon nitride nanosheet (f-CNNS) with a Cy5-labeled peptide nucleic acid (Cy5-PNA) and folate. The interaction between Cy5-PNA and CNNS quenches the fluorescence of Cy5, and the presence of folate endows the probe with good specificity to folate acceptor overexpressed cells. The probe can be specifically taken up by cancer cells with an incubation step. Upon the recognition of the PNA to complementary miRNA, the hybridization product is released from the CNNS surface, which leads to the fluorescence recovery and provides a specific method for sensing of miRNA. Thus, this probe can be used for cell-specific intracellular miRNA sensing with a confocal microscope. Using miRNA-18a as a target model, the dynamic changes of its expression level inside living cells can be monitored with the proposed method. This method possesses promising applications in the study of miRNA related bioprocesses and biomedicine.