Issue 12, 2015

Design and characterization of protein films for modeling near-infrared spectra of human tissue

Abstract

Near-infrared (near-IR) spectroscopy has been investigated for use in direct measurements of human tissue for the purpose of quantifying clinically relevant analytes such as glucose. Spectra collected by transmitting near-IR light through human tissue reveal the presence of both aqueous components and solid structures within the optical path of the measurement. Developing technology for use in making these measurements requires either the availability of human subjects or an in vitro experimental platform that can effectively simulate the spectroscopic properties of tissue. This paper describes the preparation and testing of films of collagen and keratin, the two proteins that comprise the bulk of the solid material in the human epidermis and dermis. By placing these films in the optical path of a near-IR spectrometer together with an aqueous sample cell, a phantom can be constructed that allows experiments to be performed that simulate noninvasive measurements of tissue. In this work, both constant and variable thickness films are prepared and evaluated by use of a regression fit to spectra of human tissue. The stability and spectral reproducibility of the prepared films are also assessed. The regression fits to the human subject spectra yield values of R2 ranging from 0.97 to 0.99 and the films are found to yield spectra that vary by less than a 2% relative standard deviation under three different reproducibility tests.

Graphical abstract: Design and characterization of protein films for modeling near-infrared spectra of human tissue

Article information

Article type
Paper
Submitted
05 Feb 2015
Accepted
10 Apr 2015
First published
20 Apr 2015

Analyst, 2015,140, 3981-3988

Design and characterization of protein films for modeling near-infrared spectra of human tissue

S. R. Karunathilaka and G. W. Small, Analyst, 2015, 140, 3981 DOI: 10.1039/C5AN00258C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements