Issue 9, 2015

A sequence-based two-level method for the prediction of type I secreted RTX proteins

Abstract

Many Gram-negative bacteria use the type I secretion system (T1SS) to translocate a wide range of substrates (type I secreted RTX proteins, T1SRPs) from the cytoplasm across the inner and outer membrane in one step to the extracellular space. Since T1SRPs play an important role in pathogen–host interactions, identifying them is crucial for a full understanding of the pathogenic mechanism of T1SS. However, experimental identification is often time-consuming and expensive. In the post-genomic era, it becomes imperative to predict new T1SRPs using information from the amino acid sequence alone when new proteins are being identified in a high-throughput mode. In this study, we report a two-level method for the first attempt to identify T1SRPs using sequence-derived features and the random forest (RF) algorithm. At the full-length sequence level, the results show that the unique feature of T1SRPs is the presence of variable numbers of the calcium-binding RTX repeats. These RTX repeats have a strong predictive power and so T1SRPs can be well distinguished from non-T1SRPs. At another level, different from that of the secretion signal, we find that a sequence segment located at the last 20–30 C-terminal amino acids may contain important signal information for T1SRP secretion because obvious differences were shown between the corresponding positions of T1SRPs and non-T1SRPs in terms of amino acid and secondary structure compositions. Using five-fold cross-validation, overall accuracies of 97% at the full-length sequence level and 89% at the secretion signal level were achieved through feature evaluation and optimization. Benchmarking on an independent dataset, our method could correctly predict 63 and 66 of 74 T1SRPs at the full-length sequence and secretion signal levels, respectively. We believe that this study will be useful in elucidating the secretion mechanism of T1SS and facilitating hypothesis-driven experimental design and validation.

Graphical abstract: A sequence-based two-level method for the prediction of type I secreted RTX proteins

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2015
Accepted
13 Mar 2015
First published
13 Mar 2015

Analyst, 2015,140, 3048-3056

A sequence-based two-level method for the prediction of type I secreted RTX proteins

J. Luo, W. Li, Z. Liu, Y. Guo, X. Pu and M. Li, Analyst, 2015, 140, 3048 DOI: 10.1039/C5AN00311C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements