Sensitive detection of atrazine in tap water using TELISA
Abstract
A highly sensitive flow injection analysis (FIA)-based thermal enzyme-linked immunoassay, TELISA, was developed for the rapid detection of atrazine (ATZ) in tap water. ATZ and β-lactamase-labeled ATZ were employed in a competitive immunoassay using a monoclonal antibody (mAb). After the off-column liquid-phase competition, the mAb was captured on the Protein G Sepharose™ 4 Fast Flow (PGSFF) column support material. Injected β-lactamase substrate ampicillin was degraded by the column-bound ATZ–β-lactamase, generating a detectable heat signal. Several assay parameters were optimized, including substrate concentration, flow rates and regeneration conditions, as well as the mAb and ATZ-β dilution ratios and concentrations. The assay linear range was 0.73–4.83 ng mL−1 with a detection limit of 0.66 ng mL−1. An entire heat signal requires 10 min for generation, and the cycle time is less than 40 min. The results were reproducible and stable. ATZ-spiked tap water samples exhibited a recovery rate of 103%–116%, which correlated with the UHPLC–MS/MS measurements. We attributed this significant increase in sensitivity over our previously published work to the following factors: (i) the capture of already-formed immune complexes on the column via immobilized Protein G, which eliminated chemical immobilization of the antibody; (ii) off-column preincubation allows the formation of immune complexes under nearly ideal conditions; and (iii) multiple buffers can be used to, in one case, enhance immune-complex formation and in the other to maximize enzymatic activity. Furthermore, the scheme creates a universal assay platform in which sensing is performed in the off-column incubation and detection after capture in the enzyme thermistor (ET) detector, which opens up the possibility of detecting any antigen for which antibodies were available.