Oxides in silver–graphene nanocomposites: electrochemical signatures and electrocatalytic implications†
Abstract
Herein we report an electrochemical approach to establish the presence of silver oxides in silver-reduced graphene oxide (Ag-rGO) nanocomposites synthesised under alkaline conditions. The recorded electrochemical signatures, further supported and validated by UV-Vis spectroscopy, XRD and TEM analysis, clearly establish the presence of an oxide phase of silver in the nanodimensional silver present in Ag-rGO. The Ag-rGO was tested for its electrocatalytic and electrosensing activity for hydroquinone (H2Q) and ascorbic acid (AA). The presented results establish that the electrocatalytic and electrosensing potential of the Ag-rGO for H2Q and AA can be enhanced through electroreduction of the oxide phase of silver in these nanocomposites. Our results prove that the electrocatalytic and electroanalytic activities of electroreduced Ag-rGO for AA are better than most of the electrode materials reported so far in the literature.