Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay†
Abstract
Silver nanoparticles (NPs) decorated nitrogen doped graphene (NG) nanocomposites were prepared through a one-step thermal-treatment route using arginine as the nitrogen source. By integrating the excellent electrical properties and large surface area of Ag NPs and NG, the obtained Ag/NG nanocomposites show more effective electron transfer and high loading capacity than Ag–graphene and pure NG. In the presence of a target, the stronger interaction between the aptamer and the target promotes the formation of a target–aptamer complex on the electrode surface which blocks the electron transfer. Based on this sensing mechanism, a novel and highly sensitive biosensing platform by the use of Ag/NG as enhancing materials is demonstrated for detection of the model target, acetamiprid. The presented aptasensor exhibited a wide linear response for acetamiprid in the range of 1 × 10−13 M to 5 × 10−9 M with a low detection limit of 3.3 × 10−14 M (S/N = 3). Moreover, this electrochemical aptasensor avoided complicated labeling procedures and showed magnificent sensitivity, high selectivity and low cost, which made it not only convenient but also time-saving and applicable. Furthermore, the proposed design may offer a promising way to develop a new electrochemical aptasensor for sensitive and specific detection of a wide spectrum of analytes in food, medical and environmental fields.