Issue 6, 2015

Detection of sequence-specific DNA with a morpholino-functionalized silicon chip

Abstract

In this work, an efficient method for the sequence-specific detection of DNA based on a morpholino-functionalized silicon chip platform has been proposed. Briefly, morpholino was first immobilized on the surface of a silicon chip using 3-aminopropyltriethoxysilane (APTES) as the silane coupling agent and 1,4-phenylenediisothiocyanate (PDITC) as the cross-linker and then hybridized with DNA in the ensuing step. The fluorescence label was introduced by strongly binding Rhodamine B, which contains a terminal carboxylic group, with DNA by means of phosphate–zirconium–carboxylate coordination reaction. X-ray photoelectron spectroscopy (XPS) was used to characterize the silicon surface. Under optimal conditions, the morpholino-functionalized silicon chip presented a great linear relationship between the fluorescence intensity and the logarithm of target DNA concentrations in the range from 1 pM to 1 nM with a detection limit of 4.52 pM. Furthermore, fully complementary versus single-base mismatched, three-base mismatched and non-complementary DNA could be effectively identified. The chip showed excellent stability because it could be reused for another hybridization experiment after denaturing the morpholino–complementary DNA duplex. In addition, the chip rendered satisfactory analytical performance for the detection of DNA in serum samples, thus exhibiting practical significance. Morpholino-functionalized silicon chips display good sensitivity and selectivity for the detection of DNA and promising applications in single-nucleotide polymorphisms (SNPs).

Graphical abstract: Detection of sequence-specific DNA with a morpholino-functionalized silicon chip

Article information

Article type
Paper
Submitted
21 Nov 2014
Accepted
27 Jan 2015
First published
27 Jan 2015

Anal. Methods, 2015,7, 2406-2412

Detection of sequence-specific DNA with a morpholino-functionalized silicon chip

W. Hu, Q. Hu, L. Li, J. Kong and X. Zhang, Anal. Methods, 2015, 7, 2406 DOI: 10.1039/C4AY02780A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements