Issue 2, 2015

Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds

Abstract

Induced pluripotent stem cells (iPSCs) are generated from adult somatic cells through the induction of key transcription factors that restore the ability to become any cell type found in the body. These cells are of interest for tissue engineering due to their potential for developing patient-specific therapies. As the technology for generating iPSCs advances, it is important to concurrently investigate protocols for the efficient differentiation of these cells to desired downstream phenotypes in combination with biomaterial scaffolds as a way of engineering neural tissue. For such applications, the generation of neurons within three dimensional fibrin scaffolds has been well characterized as a cell-delivery platform for murine embryonic stem cells (ESCs) but has not yet been applied to murine iPSCs. Given that iPSCs have been reported to differentiate less effectively than ESCs, a key objective of this investigation is to maximize the proportion of iPSC-derived neurons in fibrin through the choice of differentiation protocol. To this end, this study compares two EB-mediated protocols for generating neurons from murine iPSCs and ESCs: an 8 day 4−/4+ protocol using soluble retinoic acid in the last 4 days and a 6 day 2−/4+ protocol using soluble retinoic acid and the small molecule sonic hedgehog agonist purmorphamine in the last 4 days. EBs were then seeded in fibrin scaffolds for 14 days to allow further differentiation into neurons. EBs generated by the 2−/4+ protocol yielded a higher percentage of neurons compared to those from the 4−/4+ protocol for both iPSCs and ESCs. The results demonstrate the successful translation of the fibrin-based cell-delivery platform for use with murine iPSCs and furthermore that the proportion of neurons generated from murine iPSC-derived EBs seeded in fibrin can be maximized using the 2−/4+ differentiation protocol. Together, these findings validate the further exploration of 3D fibrin-based scaffolds as a method of delivering neuronal cells derived from iPSCs – an important step toward the development of iPSC-based tissue engineering strategies for spinal cord injury repair.

Graphical abstract: Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds

Article information

Article type
Paper
Submitted
13 Aug 2014
Accepted
10 Oct 2014
First published
16 Oct 2014

Biomater. Sci., 2015,3, 401-413

Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds

A. Montgomery, A. Wong, N. Gabers and S. M. Willerth, Biomater. Sci., 2015, 3, 401 DOI: 10.1039/C4BM00299G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements