Issue 6, 2015

Surfaces presenting α-phenyl mannoside derivatives enable formation of stable, high coverage, non-pathogenic Escherichia coli biofilms against pathogen colonization

Abstract

Prevention of pathogenic colonization on medical devices over a long period of time remains a great challenge, especially in a high-nutrient environment that accelerates the production of biomass leading to biofouling of the device. Since biofouling and the subsequent pathogen colonization is eventually inevitable, a new strategy using non-pathogenic bacteria as living guards against pathogenic colonization on medical devices has attracted increasing interest. Crucial to the success of this strategy is to pre-establish a high coverage and stable biofilm of benign bacteria on the surface. Silicone elastomers are one of the most widely used materials in biomedical devices. In this work, we modified silicone surfaces to promote formation of high coverage and stable biofilms by a non-pathogenic Escherichia coli strain 83972 with type 1 fimbriae (fim+) to interfere with the colonization of an aggressive biofilm-forming, uropathogenic Enterococcus faecalis. Although it is well known that mannoside surfaces promote the initial adherence of fim+ E. coli through binding to the FimH receptor at the tip of the type 1 fimbriae, it is not clear whether the fast initial adherence could lead to a high coverage and stable protective biofilm. To explore the role of mannoside ligands, we synthesized a series of alkyl and aryl mannosides varied in the structure and immobilized them on silicone surfaces pre-coated with a poly(amidoamine) (PAMAM) dendrimer. We found that stable and densely packed benign E. coli biofilms were formed on the surfaces presenting biphenyl mannoside with the highest initial adherence of fim+ E. coli. These non-pathogenic biofilms prevented the colonization of E. faecalis for 11 days at a high concentration (108 CFU mL−1, 100 000 times above the diagnostic threshold for urinary tract infection) in the nutrient-rich Lysogeny Broth (LB) media. The result shows a correlation among the initial adherence of fim+ E. coli 83972, the coverage and long-term stability of the resulting biofilms, as well as their efficiency for preventing the pathogen colonization.

Graphical abstract: Surfaces presenting α-phenyl mannoside derivatives enable formation of stable, high coverage, non-pathogenic Escherichia coli biofilms against pathogen colonization

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2015
Accepted
14 Apr 2015
First published
27 Apr 2015

Biomater. Sci., 2015,3, 842-851

Author version available

Surfaces presenting α-phenyl mannoside derivatives enable formation of stable, high coverage, non-pathogenic Escherichia coli biofilms against pathogen colonization

Z. Zhu, J. Wang, A. I. Lopez, F. Yu, Y. Huang, A. Kumar, S. Li, L. Zhang and C. Cai, Biomater. Sci., 2015, 3, 842 DOI: 10.1039/C5BM00076A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements