Nanoscopic leg irons: harvesting of polymer-stabilized membrane proteins with antibody-functionalized silica nanoparticles†
Abstract
Silica-based nanoparticles (SiNPs) are presented to harvest complex membrane proteins, which have been embedded into unilammelar polymersomes via in vitro membrane assisted protein synthesis (iMAP). Size-optimized SiNPs have been surface-modified with polymer-targeting antibodies, which are employed to harvest the protein-containing polymersomes. The polymersomes mimic the cellular membrane. They are chemically defined and preserve their structural–functional integrity as virtually any membrane protein species can be synthesized into such architecture via the ribosomal context of a cellular lysate. The SiNPs resemble ‘heavy leg irons’ catching the polymersomes in order to enable gravity-based generic purification and concentration of such proteopolymersomes from the crude mixture of cellular lysates.