Issue 1, 2015

Simulating preferential sorption of tartrate on prismatic calcite surfaces

Abstract

Understanding the influence of additives on crystal growth is required to engineer the crystal properties according to their functional applications. In this work, the sorption behavior of tartrate on calcite surfaces is investigated employing molecular dynamics simulations to understand additive-mediated crystal growth. The free energy landscapes for the sorption of tartrate are calculated using metadynamics. The adsorption binding energies of favorable conformations, orientations and positions of tartrate near the (104) and (1−10) calcite surfaces are determined. The obtained results provide a molecular-level explanation of the experimentally observed tartrate-stabilized exposure of prismatic {1−10} faces during calcite growth. The simulations show that tartrate preferentially adsorb directly to the (1−10) calcite surface, whereas tartrate is more loosely adsorbed on the (104) surface, mainly by solvent-mediated binding. The (1−10) geometry of calcite surface sites closely matches the structure of tartrate, with a specific role of carboxylate and hydroxyl groups in recognizing the calcium and carbonate ions, respectively. Two stable adsorption configurations are identified for the (1−10) face: (1) adsorbed tartrate with the effect of surface-induced conformational change and (2) incorporated tartrate into the surface by fitting one of the carboxylate groups into lattice position normally occupied by carbonate ions and additionally stabilized by binding of both hydroxyl groups to neighboring carbonate ions. The results indicate that surface energetics, structural matching and adsorbed water layer play a major role in the strength of the interactions and hence in the expression of calcite morphology. Preferential adsorption of tartrate on {1−10} surfaces could stabilize these otherwise fast-growing faces and thus inhibit crystal growth in {1−10} directions.

Graphical abstract: Simulating preferential sorption of tartrate on prismatic calcite surfaces

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2014
Accepted
06 Nov 2014
First published
07 Nov 2014
This article is Open Access
Creative Commons BY-NC license

CrystEngComm, 2015,17, 149-159

Author version available

Simulating preferential sorption of tartrate on prismatic calcite surfaces

M. Ukrainczyk, M. Greiner, E. Elts and H. Briesen, CrystEngComm, 2015, 17, 149 DOI: 10.1039/C4CE01447B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements