Issue 41, 2015

Optical recognition of alkyl nitrile by a homochiral iron(ii) spin crossover host

Abstract

A homochiral complex 1·MeCN was synthesized by the multicomponent self-assembly of (R)-phenylethylamine, 1-methyl-2-imidazolecarboxaldehyde and iron(II) ions in acetonitrile solution. X-ray crystallography analysis revealed that complex 1·MeCN crystallized in the chiral space group P21. The octahedral coordination mononuclear [FeL3]2+ cations are stacked into a left-handed double helix supramolecular structure along the a axis with uncoordinated acetonitrile molecules filling the helical channel. Interestingly, when 1·MeCN redissolved in racemic lactonitrile (LN) or methylglutaronitrile (MGN), the [FeL3]2+ cations can recognize one enantiomeric alkyl nitrile by forming 1·1/3(R)-LN or 1·1/3(S)-MGN crystals. 1·1/3(R)-LN and 1·1/3(S)-MGN crystallized in the P212121 space group, and the [FeL3]2+ cations are stacked in a triple helix mode with the enantiomeric alkyl nitrile captured in the helical channel. Magnetic measurement indicated that 1·MeCN displayed spin-crossover at 355 K, while the transition temperature became 220 K after desolvation. However, 1·1/3(R)-LN and 1·1/3(S)-MGN exhibited incomplete and reversible spin-crossover behaviors at about 363 K. The results demonstrated that the mononuclear iron(II) complex could be used as a host for racemic alkyl nitrile separation, and the spin-crossover property was influenced by the process of chiral recognition.

Graphical abstract: Optical recognition of alkyl nitrile by a homochiral iron(ii) spin crossover host

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2015
Accepted
20 Sep 2015
First published
21 Sep 2015

CrystEngComm, 2015,17, 7956-7963

Author version available

Optical recognition of alkyl nitrile by a homochiral iron(II) spin crossover host

L. Qin, C. Pang, W. Han, F. Zhang, L. Tian, Z. Gu, X. Ren and Z. Li, CrystEngComm, 2015, 17, 7956 DOI: 10.1039/C5CE01617G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements