Issue 9, 2015

Sequential “click” functionalization of mesoporous titania for energy-relay dye enhanced dye-sensitized solar cells

Abstract

Energy relay dyes (ERDs) have been investigated previously as a mean to achieve panchromatic spectral response in dye-sensitized solar cells via energy transfer. To reduced the distance between the ERDs and energy-accepting injection dyes (IDs) on the surface of a mesoporous titanium dioxide electrode, the ERDs were immobilized adjacent to the IDs via a sequential functionalization approach. In the first step, azidobenzoic acid molecules were co-adsorbed on the mesoporous titanium dioxide surface with the ID. In the second step, the highly selective copper(I)-catalyzed 1,3-dipolar azide–alkyne cycloaddition “click” reaction was employed to couple an alkyne-functionalized ERD to the azidobenzoic acid monolayer. The cycloaddition step in the mesoporous electrode was slowed dramatically due to reactants and catalysts forming agglomerates. In solar cell devices, the close proximity between the surface-immobilized ERD and energy-accepting squaraine sensitizer dyes results in energy transfer efficiencies of up to 91%. The relative improvement in device performance due to the additional ERD spectral response was 124%, which is among the highest reported. The sequential functionalization approach described herein is transferrable to other applications requiring the functionalization of electrodes with complex molecules.

Graphical abstract: Sequential “click” functionalization of mesoporous titania for energy-relay dye enhanced dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2014
Accepted
29 Jan 2015
First published
29 Jan 2015

Phys. Chem. Chem. Phys., 2015,17, 6565-6571

Author version available

Sequential “click” functionalization of mesoporous titania for energy-relay dye enhanced dye-sensitized solar cells

E. L. Unger, S. J. Fretz, B. Lim, G. Y. Margulis, M. D. McGehee and T. D. P. Stack, Phys. Chem. Chem. Phys., 2015, 17, 6565 DOI: 10.1039/C4CP04878D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements