Issue 17, 2015

Experimental and theoretical studies on aqueous-phase reactivity of hydroxyl radicals with multiple carboxylated and hydroxylated benzene compounds

Abstract

In this study, we shed light on the initial addition of hydroxyl radicals (HO˙) to multiple carboxylated and hydroxylated benzene compounds in aqueous-phase advanced oxidation processes (AOPs). We analyze the experimentally measured transient spectra near neutral pH using quantum mechanical-based time-dependent density functional theory (TD-DFT). The ab initio DFT method was first used to find and optimize aqueous-phase transition state structures, then the TD-DFT was used to analyze molecular orbitals (MOs) of the optimized transition state structures to reveal the functional groups that are responsible for the individual absorption peaks. The initial addition of HO˙ to the benzene ring produced hydroxycyclohexadienyl radicals. Then, HO-adducts are generated from dimerization or disproportionation of hydroxycyclohexadienyl radicals and represent their transient spectral peaks at approximately 350 nm and 250 nm. As reaction proceeds, the HO-adducts are decreased depending on the subsequent reactions. These investigations into the experimental transient spectra coupled with the theoretical analysis using the TD-DFT enable us to visualize an initial transformation of organic compounds induced by the aqueous phase HO˙ oxidation. Moreover, the experimental reaction rate constants and the theoretically calculated aqueous phase free energies of activation provide quantitative insights into the addition of HO˙ to multiple carboxylated and hydroxylated benzene compounds.

Graphical abstract: Experimental and theoretical studies on aqueous-phase reactivity of hydroxyl radicals with multiple carboxylated and hydroxylated benzene compounds

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2015
Accepted
31 Mar 2015
First published
31 Mar 2015

Phys. Chem. Chem. Phys., 2015,17, 11796-11812

Author version available

Experimental and theoretical studies on aqueous-phase reactivity of hydroxyl radicals with multiple carboxylated and hydroxylated benzene compounds

D. Minakata, W. Song, S. P. Mezyk and W. J. Cooper, Phys. Chem. Chem. Phys., 2015, 17, 11796 DOI: 10.1039/C5CP00861A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements