Issue 18, 2015

Self-assembly of photoswitchable diblock copolymers: salt-induced micellization and the influence of UV irradiation

Abstract

Salt-induced self-assemblies of poly(ethylene glycol-block-spiropyran methacrylate) (PEG-b-PSPMA) block copolymers were studied in this research. PEG-b-PSPMA block copolymers were dissolved in a 10 : 1 N,N-dimethyl-formamide (DMF)/water mixture. Upon ultraviolet light (UV) irradiation, the pendant spiropyran (SP) groups in the PSPMA blocks were isomerized into open merocyanine (MC) forms and the addition of inorganic salts (CuCl2, FeCl3 and Zn(CH3COO)2) induced micellization of PEG-b-PSPMA block copolymers in the solutions. In a salt-induced micelle, complexes formed by PSPMA and inorganic ions are in the cores and PEG chains are in the coronae. The reverse conversion of the isomers from MC form to SP form in the dark was studied by UV-vis, and the self-assembled aggregates were analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The self-assembly of PEG-b-PSPMA in aqueous medium was also investigated. In aqueous solution, amphiphilic PEG-b-PSPMA self-assembled into micelles with the hydrophobic PSPMA blocks in the cores and the hydrophilic PEG blocks in the coronae. Upon UV irradiation, the hydrophobic SP units in the cores were isomerized into hydrophilic MC forms. The MC isomers have the attractive MC–MC interactions, and the reversion from MC to SP in the dark is difficult. DLS and TEM results both demonstrated that the micelles self-assembled by PEG-b-PSPMA did not disassemble upon UV irradiation, due to the attractive MC–MC interactions in the cores.

Graphical abstract: Self-assembly of photoswitchable diblock copolymers: salt-induced micellization and the influence of UV irradiation

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2015
Accepted
08 Apr 2015
First published
10 Apr 2015

Phys. Chem. Chem. Phys., 2015,17, 12215-12221

Self-assembly of photoswitchable diblock copolymers: salt-induced micellization and the influence of UV irradiation

J. Zhang, Y. Zhang, F. Chen, W. Zhang and H. Zhao, Phys. Chem. Chem. Phys., 2015, 17, 12215 DOI: 10.1039/C5CP01560J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements