Insight into photofragment vector correlation by a multi-center impulsive model
Abstract
A multi-center impulsive model has been recently developed to characterize the dynamic feature of product energy distribution in photodissociation of formaldehyde, H2CO → CO + H2. (J. Phys. Chem. A, 2015, 119, 29) The model is extended to predict the vector correlations among transition dipole moment μ of the parent molecule, recoil velocity v and rotational angular momentum j of the fragments produced via the transition state (TS) and roaming path. The correlation results of μ–j, j–j and μ–v vectors of the fragments are consistent with those reported using quasi-classical trajectory simulation on the global potential energy surface. In contrast to the TS route, the vector properties via the roaming path are loosely correlated. This work offers an alternative method to study stereodynamics of the photodissociation process, and is conducive to clarifying the origin of photofragment vector correlation especially for the roaming pathway.