Physical and chemical tuning of two-dimensional transition metal dichalcogenides
Abstract
The development of two-dimensional (2D) materials has been experiencing a renaissance since the adventure of graphene. Layered transition metal dichalcogenides (TMDs) are now playing increasingly important roles in both fundamental studies and technological applications due to their wide range of material properties from semiconductors, metals to superconductors. However, a material with fixed properties may not exhibit versatile applications. Due to the unique crystal structures, the physical and chemical properties of 2D TMDs can be effectively tuned through different strategies such as reducing dimensions, intercalation, heterostructure, alloying, and gating. With the flexible tuning of properties 2D TMDs become attractive candidates for a variety of applications including electronics, optoelectronics, catalysis, and energy.
- This article is part of the themed collection: 2D Transition Metal Dichalcogenide (TMD) Nanosheets