Issue 3, 2015

Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions

Abstract

Cu2+-doped zeolitic imidazolate framework (ZIF) crystals were efficiently prepared by reaction of Cu(NO3)2, Zn(NO3)2, and 2-methylimidazole in methanol at room temperature. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction showed that the Cu/ZIF-8 particles were nanosized (between ca. 120 and 170 nm) and that the body-centered cubic crystal lattice of the parent ZIF-8 framework is continuously maintained, regardless of the doping percentage. Moreover, thermogravimetric analyses and specific BET surface area measurements demonstrated that the doping does not alter the high stability of ZIF-8 crystals and that the porosity only decreases at a high doping percentage (25% in Cu2+). The Cu/ZIF-8 material showed excellent catalytic activity in the [3 + 2] cycloaddition of organic azides with alkynes and in Friedländer and Combes condensations due to the high catalyst surface area and the high dispersion of Cu/ZIF-8 particles. Notably, the Cu/ZIF-8 particles not only exhibit excellent performance but also show great stability in the reaction, allowing their reuse up to ten times in condensation reactions. Our findings explored a simple and powerful way to incorporate metal ions into the backbones of open framework materials without losing their properties.

Graphical abstract: Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2014
Accepted
19 Dec 2014
First published
23 Dec 2014

Catal. Sci. Technol., 2015,5, 1829-1839

Author version available

Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions

A. Schejn, A. Aboulaich, L. Balan, V. Falk, J. Lalevée, G. Medjahdi, L. Aranda, K. Mozet and R. Schneider, Catal. Sci. Technol., 2015, 5, 1829 DOI: 10.1039/C4CY01505C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements