A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation†
Abstract
The mesoporous ZSM-5 zeolite obtained from alkaline treatment was found to be a superior support of bimetallic FeCu, minimizing the nanoparticle size, enhancing the bimetallic interaction, and promoting catalytic oxidation of phenol. The physicochemical characteristics of the as-prepared FexCuy/ZSM-5 samples were evaluated by XRD, TEM, Ar adsorption, H2-TPR, and 57Fe Mossbauer spectroscopy which revealed a strong bimetallic interaction. Meanwhile, phenol oxidation was applied as a probe reaction under mild conditions. By supporting FeCu bimetallic oxides on mesoporous ZSM-5, the obtained Fe5Cu5/ME displayed the highest activity, which can be attributed to both the minimized nanoparticle size and the enhanced bimetallic interaction. The mesoporous ZSM-5 support used in this work was obtained from alkaline treatment, which led to a rough mesoporous surface. This surface sufficiently enhanced the dispersion and prohibited metal migration, therefore preventing nanoparticle aggregation and enhancing the bimetallic interaction. The strategy of using mesoporous ZSM-5 obtained from alkaline treatment as a support is a reliable method for preparing multi-metallic catalysts with well-dispersed nanoparticles.