Issue 2, 2015

Improved reaction conditions for the synthesis of new NKP-1339 derivatives and preliminary investigations on their anticancer potential

Abstract

The very promising results of Na-trans-[RuCl4(1H-indazole)2] (NKP-1339) in clinical studies have fuelled renewed interest in the research and development of ruthenium(III) coordination compounds for cancer therapy. By applying an improved synthetic approach to this class of coordination compounds, six new examples of the general formula (cation)-trans-[RuCl4(azole)2], where (cation) = tetrabutylammonium (Bu4N)+ (1, 2), sodium (3, 4), azolium (5, 6), and azole = 1-methyl-indazole (1, 3, 5), 1-ethyl-indazole (2, 4, 6), have been prepared. All compounds have been characterized by elemental analysis, electrospray ionization (ESI) mass spectrometry, UV-vis-, and NMR-spectroscopy and, if possible, X-ray diffraction analysis. Furthermore, the influence of the alkyl substituent at the position N1 of the indazole backbone on the stability in aqueous media as well as on the biological activity in three human cancer cell lines (CH1, A549, and SW480) and on the cellular accumulation in SW480 cells is discussed.

Graphical abstract: Improved reaction conditions for the synthesis of new NKP-1339 derivatives and preliminary investigations on their anticancer potential

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2014
Accepted
24 Oct 2014
First published
11 Nov 2014

Dalton Trans., 2015,44, 659-668

Improved reaction conditions for the synthesis of new NKP-1339 derivatives and preliminary investigations on their anticancer potential

P.-S. Kuhn, V. Pichler, A. Roller, M. Hejl, M. A. Jakupec, W. Kandioller and B. K. Keppler, Dalton Trans., 2015, 44, 659 DOI: 10.1039/C4DT01645A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements