Issue 9, 2015

CPMV-induced synthesis of hollow mesoporous SiO2 nanocapsules with excellent performance in drug delivery

Abstract

Hollow mesoporous-SiO2 nanocapsules have been synthesized at room temperature using unmodified cowpea Mosaic Virus (CPMV) as a template, and without using any catalyst or surfactant during the synthesis. The average size of the capsules synthesized was ∼200–250 nm with a 60–100 nm hollow core. The resulting nanocapsules were characterized using high resolution transmission electron microscopy (HRTEM). The biocompatibility of the hollow mesoporous SiO2 nanocapsules was investigated with an MTT assay using the RAW 264.7 cells, HepG2 cells (human liver carcinoma cells), and Hek293 cells (human embryonic kidney cells). The nanocapsules were loaded with fluorescent molecules (rhodamine 6G), doxorubicin (DOX) – an anticancer drug, and chloroquine diphosphate (CQDP) – an antimalarial drug, and their release was studied using a UV-Vis spectrometer. The development of surfactant free, bio-safe, hollow and mesoporous SiO2 nanocapsules with CPMV provides a route for the synthesis of porous nanocapsules for drug loading and the sustained delivery of drugs. The synthesis method for hollow mesoporous SiO2 nanocapsules using CPMV is novel, straightforward, and further demonstrates that, in general, nanoformulated capsules can be used for various drug-delivery-based therapeutic applications. To check the in vitro efficacy in medical biotechnology, Hek293 and HepG2 cell lines were used to study the cell viability of DOX-loaded hollow silica nanocapsules. The results show that the bio SiO2 nanocapsules synthesized with CPMV present an effective cargo and are suitable for nanoformulating with DOX, with the resultant nanoformulation showing good promise for killing cancer specific cells.

Graphical abstract: CPMV-induced synthesis of hollow mesoporous SiO2 nanocapsules with excellent performance in drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2014
Accepted
12 Dec 2014
First published
12 Dec 2014

Dalton Trans., 2015,44, 4308-4317

Author version available

CPMV-induced synthesis of hollow mesoporous SiO2 nanocapsules with excellent performance in drug delivery

K. Kumar, S. Kumar Doddi, M. Kalle Arunasree and P. Paik, Dalton Trans., 2015, 44, 4308 DOI: 10.1039/C4DT02549K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements