Hierarchical cupric oxide nanostructures on copper substrate for cold cathode emission: an experimental venture with theoretical correlation†
Abstract
In this paper we report a facile route for the synthesis of controlled CuO nanoarchitectures directly grown on a copper substrate by a one-step simple chemical route with varying concentration of non-ionic surfactant PEG-6K. The phase purity and degree of crystallinity of the as-developed nanostructures were systemically investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (HRTEM). A detailed analysis by field emission scanning electron microscopy confirmed the uniformity of the prepared nanostructures on the substrates. These architectures displayed substantial improvement of field emission properties with respect to other structures of CuO reported so far. A particular nanostructure (needle) among them showed a down shift of the turn-on field to 2.2 V μm−1 coupled with a good enhancement factor (β) ∼516, which are deemed as sufficient for electron emission based applications such as field emission displays and vacuum nanoelectronic devices. The origin of this efficient field emission from CuO nanoarchitectures, were probed computationally by investigating the local electric field distribution through finite element based simulation method using the ANSYS Maxwell simulation package.