Issue 15, 2015

1,4-Bis(2′-pyridylethynyl)benzene as a ligand in heteronuclear gold–thallium complexes. Influence of the ancillary ligands on their optical properties

Abstract

The reaction of 1,4-bis(2′-pyridylethynyl)benzene (L) with [{Au(C6X5)2}Tl]n affords new heterometallic AuI/TlI complexes with different stoichiometries, structural arrangements and optical properties depending on the halogens present in the aryl group. The chlorinated derivative [{Au(C6Cl5)2}Tl(L)]n (1) displays polymeric chains built thanks to unsupported Au⋯Tl interactions and bridging bidentate ligands between adjacent chains, while in the fluorinated species [{Au(C6F5)2}2Tl2(L)2]n (2), also containing N-donor bridging ligands and Au⋯Tl contacts, polymerization occurs via Tl⋯Caryl non-bonding interactions between neighbouring molecules. The optical properties of 1 and 2 have been studied experimentally and theoretically, concluding that the luminescence of 1 in the solid state has its origin in the Au⋯Tl interactions, and that the Tl⋯Caryl interactions in 2 favour a non-radiative deactivation pathway that avoids luminescence. The strength of the non-bonding interactions present in 1 has also been theoretically studied at the HF and MP2 levels, revealing the metallophilic contact as the strongest one.

Graphical abstract: 1,4-Bis(2′-pyridylethynyl)benzene as a ligand in heteronuclear gold–thallium complexes. Influence of the ancillary ligands on their optical properties

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2014
Accepted
10 Dec 2014
First published
08 Jan 2015

Dalton Trans., 2015,44, 6719-6730

1,4-Bis(2′-pyridylethynyl)benzene as a ligand in heteronuclear gold–thallium complexes. Influence of the ancillary ligands on their optical properties

M. Arca, R. Donamaría, M. C. Gimeno, V. Lippolis, J. M. López-de-Luzuriaga, E. Manso, M. Monge and M. E. Olmos, Dalton Trans., 2015, 44, 6719 DOI: 10.1039/C4DT03413A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements