Issue 15, 2015

Retracted Article: Ni/Ti layered double hydroxide: synthesis, characterization and application as a photocatalyst for visible light degradation of aqueous methylene blue

Abstract

Visible light responsive 2 : 1 Ni/Ti layered double hydroxide (LDH) was synthesized by a single step hydrothermal route using commercially available Ni(NO3)2·6H2O, TiCl4 and urea. The material exhibited significant absorption in the visible range with a very narrow band gap (2.68 eV). This could be attributed to structural defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. FT-IR, TGA, DTA, DSC, HR-TEM and SEM-EDX measurements yielded information about structural aspects, thermal stability and surface morphology. Surface and pore characteristics of the material were obtained from the BET isotherm for N2 adsorption at 77 K. Zeta potential measurements were used to characterize the electrical properties of the surface while XPS revealed changes in surface states and oxygen deficiencies. The material was found to be an excellent photocatalyst for the degradation of aqueous methylene blue in visible light. The photocatalytic properties of the material were explained on the basis of the narrow band gap, the high surface area and the presence of surface defects. The photocatalytic activity improved in alkaline media [pH 11.0, catalyst load 15 mg in 200 ml dye solution, dye concentration 1 × 10−6 M (= 0.3198 mg L−1)] due to the electrostatic attractions between the dye cations and the negative charges on the Ni/Ti LDH surface. The catalytic activity was found to be higher than the common commercial catalysts like ZnO, ZnS, NiO, TiO2 and Degussa P25. The catalytic activity was retained even after five methylene blue degradation cycles, demonstrating that the LDH could be an important addition to the field of wastewater treatment.

Graphical abstract: Retracted Article: Ni/Ti layered double hydroxide: synthesis, characterization and application as a photocatalyst for visible light degradation of aqueous methylene blue

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
21 Jan 2015
Accepted
26 Feb 2015
First published
26 Feb 2015

Dalton Trans., 2015,44, 6809-6824

Social activity

Spotlight

Advertisements