Issue 25, 2015

Voltammetric behavior of 1- and 4-[S2VVW17O62]5− in acidified acetonitrile

Abstract

Data derived from a voltammetric and spectroscopic study of the VV/IV couple associated with the initial reduction of the Wells–Dawson-type mono vanadium-substituted polyoxometalates, 1- and 4-[S2VVW17O62]5− in CH3CN as a function of CF3SO3H acid concentration have been obtained. 51V NMR (VV component) and EPR (VIV component) spectra were measured in CH3CN in the presence and absence of an acid. These data showed a small fraction of the 1-isomer in the 4-[S2VVW17O62]5− sample and that protonation could occur at both redox levels for both isomers. On the basis of the mechanism postulated from the voltammetric and spectroscopic data, simulations of cyclic voltammograms were undertaken for the reduction of the isomerically pure 1-[S2VVW17O62]5− isomer over a wide acid concentration range, and the results were compared with experimental data. Cyclic voltammograms of the VV/IV couple derived from the reduction of 1- and 4-[X2VVW17O62]7− (X = P, As) were also obtained in CH3CN and the results were compared with those for 1- and 4-[S2VVW17O62]5−. Reversible potentials for the VV/IV couple are dependent on the anion charge of the polyoxometalate. Analysis of cyclic voltammograms obtained for 1- and 4-[S2VVW17O62]5− in acetonitrile, acetone, dimethyl sulfoxide, dimethyl formamide and nitromethane showed that these VV/IV reversible potentials are also dependent on the acceptor numbers and the polarity index (ENT) values of the organic solvents.

Graphical abstract: Voltammetric behavior of 1- and 4-[S2VVW17O62]5− in acidified acetonitrile

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2015
Accepted
15 May 2015
First published
15 May 2015

Dalton Trans., 2015,44, 11660-11668

Voltammetric behavior of 1- and 4-[S2VVW17O62]5− in acidified acetonitrile

T. Ueda, M. Ohnishi, D. Kawamoto, S. Guo, J. F. Boas and A. M. Bond, Dalton Trans., 2015, 44, 11660 DOI: 10.1039/C5DT01530H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements