Issue 42, 2015

All high-spin (S = 2) iron(ii) hemes are NOT alike

Abstract

A common structural motif in heme proteins is a five-coordinate species in which the iron is coordinated by a histidyl residue. The widely distributed heme proteins with this motif are essential for the well being of humans and other organisms. We detail the differences in molecular structures and physical properties of high-spin iron(II) porphyrin derivatives ligated by neutral imidazole, hydrogen bonded imidazole, and imidazolate or other anions. Two distinct (high spin) electronic states are observed that have differing d-orbital occupancies and discernibly different five-coordinate square-pyramidal coordination groups. The doubly occupied orbital in the imidazole species is a low symmetry orbital oblique to the heme plane whereas in the imidazolate species the doubly occupied orbital is a high symmetry orbital in the heme plane, i.e., the primary doubly-occupied d-orbital is different. Methods that can be used to classify a particular complex into one or the other state include X-ray structure determinations, high-field Mössbauer spectroscopy, vibrational spectroscopy, magnetic circular dichroism, and even-spin EPR spectroscopy. The possible functional significance of the ground state differences has not been established for heme proteins, but is likely found in the pathways for oxygen transport vs. oxygen utilization.

Graphical abstract: All high-spin (S = 2) iron(ii) hemes are NOT alike

Article information

Article type
Perspective
Submitted
22 Jul 2015
Accepted
11 Sep 2015
First published
11 Sep 2015

Dalton Trans., 2015,44, 18301-18310

Author version available

All high-spin (S = 2) iron(II) hemes are NOT alike

C. Hu, C. E. Schulz and W. R. Scheidt, Dalton Trans., 2015, 44, 18301 DOI: 10.1039/C5DT02795K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements