Issue 4, 2015

Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting

Abstract

Photoelectrochemical (PEC) solar water splitting over oxynitrides is a promising process for renewable hydrogen production. However, the oxynitride heterojunction photoanodes with high charge-separation efficiency and stability, which have unique dimensionality-dependent integrative and synergic effects, are intriguing but still underdeveloped. Here, we design and fabricate the 1D/2D nanorod/nanosheet-assembled tantalum oxynitride (TaON) photoanode with the high PEC activity. Especially, integrated 3D heterojunction photoanodes comprising the 1D/2D barium-doped TaON (Ba-TaON) array and 2D carbon nitride (C3N4) nanosheets decorated with CoOx nanoparticles as a novel stack design were firstly prepared and the 3D CoOx/C3N4/Ba-TaON photoanodes with the remarkable photostability reached the pronounced photocurrent of 4.57 mA cm−2 at 1.23 V vs. RHE under AM 1.5G simulated sunlight. More broadly, the harness charge transfer process of this unique 3D heterojunction photoanode with the intrinsic requirements has been identified by the quantitative analysis combined with the electrochemical impedance and photoluminescence analysis. All the results highlight the great significance of the 3D dimensionality-dependent heterojunction as a promising photoelectrode model for the application in solar conversion. The cooperating amplification effects of nanoengineering from composition regulation, morphology innovation and heterojunction construction provide a valuable insight for creating more purpose-designed (oxy)nitride photoelectrodes with highly efficient performance.

Graphical abstract: Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2014
Accepted
09 Feb 2015
First published
09 Feb 2015

Energy Environ. Sci., 2015,8, 1348-1357

Author version available

Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting

J. Hou, H. Cheng, O. Takeda and H. Zhu, Energy Environ. Sci., 2015, 8, 1348 DOI: 10.1039/C4EE03707C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements